



# IEEE P1451.5 Wireless Sensor Interface Working Group Bluetooth Subgroup Proposal

# Peter Flittner, CSR (Bluetooth Subgroup Chair) Thurston Brooks, 3eTI

#### **Cambridge Silicon Radio**

Science Park, Milton Road Cambridge, CB4 0WH, United Kingdom

Tel: +44 1223 692000

**3e Technologies International** 

700 King Farm Blvd Rockville, MD 20850

Tel: 301-670-6779

www.3eti.com





# Why Bluetooth?

Enable short-range unconscious radio communications & personal area networks Key enablers:

- Low cost
- Robust and reliable
- Low user maintenance
  - Easy to enable, easy to use
  - Upwards compatibility





### **Bluetooth Features for IEEE1451.5**

# Bluetooth has many features that make it a suitable wireless technology for IEEE1451.5

- Device Discovery
  - Bluetooth Inquiry mode allows devices to be discovered
  - The Class of Device identified during inquiry allows filtering for device types
  - Bluetooth Service Discovery Profile (SDP) allows for browsing for features and services





# **Device Discovery**







# **Service Discovery**









### Connection to a service







#### **Bluetooth Features for IEEE1451.5**

# Bluetooth has many features that make it a suitable wireless technology for IEEE1451.5

- Connections
  - Bluetooth allows piconets with point to multipoint connections of up to 7 slaves to one master
  - More devices can be served by making fast connections (as low as 40 msec)
  - Data rates up to 723 Kbytes using asynchronous (ACL) channels
  - Synchronous (SCO) channels for data streaming
  - Reliable ACL channels (with retransmission)
  - L2CAP layer implements service multiplexing and fragmentation and reassembly
  - Quality of Service is negotiable to include low latency or high reliability channels
  - The Bluetooth clock can be used to implement time synchronization across a piconet
  - Low power modes to allow battery powered devices with projected life in years





# **Masters and slaves in piconets**







#### **Bluetooth Features for IEEE1451.5**

# Bluetooth has many features that make it a suitable wireless technology for IEEE1451.5

- Connections
  - Bluetooth allows piconets with point to multipoint connections of up to 7 slaves to one master
  - More devices can be served by making fast connections (as low as 40 msec)
  - Data rates up to 723 Kbytes using asynchronous (ACL) channels
  - Synchronous (SCO) channels for data streaming
  - Reliable ACL channels (with retransmission)
  - L2CAP layer implements service multiplexing and fragmentation and reassembly
  - Quality of Service is negotiable to include low latency or high reliability channels
  - The Bluetooth clock can be used to implement time synchronization across a piconet
  - Low power modes to allow battery powered devices with projected life in years





## Advantages that Bluetooth Features offer IEEE1451.5

#### **Architecture**

- Bluetooth protocol stack can be implemented on two processors as a host and controller (radio) using the Host Controller Interface (HCI)
- NCAP can implement the host on a second processor with controller on a single chip
   Bluetooth device for maximum performance in multipoint scenarios
- TIM can be implement on a single chip Bluetooth device (no extra microcontroller)
- Complete single chip TIM measurement systems possible with re-use of chips containing ADCs and DSPs designed for commercial audio applications

#### **Commercial**

- Many commercial HHDs, PCs and mobile phones support Bluetooth
- Low cost re-use of commercial technology for industrial market
- Bluetooth is shipping now in volume over 120 M solutions predicted for 2004
- Chip prices now below \$4, falling to \$2 in 2006





## **Bluetooth Proposal for IEEE1451.5**

#### **Architecture**

- IEEE1451.5 implemented using Bluetooth Network Encapsulation Protocol (BNEP) transport
- BNEP is lightweight protocol with as low as single byte overhead
- Allows re-use of Bluetooth address (MAC address) to reduce protocol overhead in point to point links
- BNEP can also transport IP packets, so alternative implementations or extensions to include routing are possible.

#### Channels

- Use ACL channels for datagram triggering and streaming services
- Use Bluetooth clock for synchronization
- Use QoS interface to configure data channels





# **Bluetooth Proposal for IEEE1451.5**

## **Device Discovery**

Using Bluetooth Inquiry and Paging modes

#### **TEDS**

- Single chip TIMs can use SDP database to store TEDS
- SDP protocol allows for efficient TEDS browsing and retrieval from NCAP

#### **Performance**

- Proposed IEEE1451.0 datagram has 13 byte header
- Smallest Bluetooth packet has 17 byte payload so single readings can be transported in a single data packet for maximum throughput and minimum latency





# **Bluetooth IEEE1451.5 Example**







# **Summary**

- Bluetooth offers industrial users a low cost, high performance and secure wireless technology that is mature and in mass commercial production
- The Bluetooth IEEE1451.5 proposal will allow re-use of low cost commercial technology to deliver high performance smart sensor handling capability
- The proposal will make use of existing Bluetooth protocols and profiles so only thin dot0/dot 5 applications will have to be implemented
- The proposal will be extendable to take advantage of future developments in Bluetooth, including Enhanced Data Rate (EDR) which increases data rate to over 2 Mbps, and is scheduled for Q4 2004